
Lite-QCNet: Technical Report for 2024 Argoverse Motion Forecasting Challenge

Zikang Zhou1 Zihao Wen1 Jianping Wang1 Yung-Hui Li2 Yu-Kai Huang3

1City University of Hong Kong 2Hon Hai Research Institute 3Carnegie Mellon University

Abstract

This technical report introduces Lite-QCNet, a
lightweight joint multi-agent motion forecasting model.
This model improves the efficiency of QCNet/QCNeXt in
two ways. First, it utilizes a patching module for temporal
abstraction, which reduces the number of tokens in the
time dimension and improves the efficiency of factorized
spatial-temporal attention. Second, we use k-NN local
attention for spatial interaction modeling, which enables
more stable inference latency and memory usage than
radius-based local attention. The resulting model con-
sumes much fewer training resources than QCNet/QCNeXt
while achieving similar prediction performance on the
Argoverse 2 Multi-Agent Motion Forecasting Benchmark.

1. Introduction
Efficient motion forecasting is critical for the safety of

autonomous driving. While the prediction accuracy of state-
of-the-art motion forecasting models has been continuously
improved by introducing advanced architecture, e.g., Trans-
formers [3], the efficiency issue is becoming more and more
prominent. In this technical report, we revisit the state-
of-the-art spatial-temporal Transformer models for motion
forecasting, i.e., the QCNet family [6, 7], and introduce
two improvements to lower the training/inference latency
and the memory usage. First, inspired by [5], we utilize
a patching module to reduce the temporal tokens, making
the spatial-temporal Transformers more efficient. Second,
we replace radius-based spatial attention with k-NN spatial
attention, which can stabilize inference latency and mem-
ory usage. By incorporating these modifications, our pro-
posed Lite-QCNet performs similarly to QCNet/QCNeXt
on the Argoverse 2 Motion Forecasting Dataset [4] with
lower training and inference costs.

2. Methodology
This section describes our modifications to the QCNet

family [6, 7]. Previously, QCNet and QCNeXt utilized
the relative spacetime representation to incorporate roto-
translation invariance in space and translation invariance in

time. As a result, these models can achieve lower inference
latency by leveraging the key-value cache for Transformers.
However, implementing feature caching requires substantial
engineering efforts. On the other hand, the radius-based lo-
cal attention modules in QCNet/QCNeXt may suffer from
high costs in extreme scenarios, such as those involving
heavy traffic. This work aims to arrive at an efficient solu-
tion even without feature caching (although feature caching
can still be supported as long as we respect the invariance in
space and time), especially when the historical observation
window is large. Our modifications to the baseline models
are illustrated as follows.

2.1. Modification 1: Agent Patching

For a Transformer architecture that factorizes space and
time, the temporal self-attention has the complexity of
O(AT 2), the agent-map cross-attention has the complex-
ity of O(ATM), and the agent-agent self-attention has the
complexity of O(A2T ), with A, T , and M denoting the
numbers of agents, historical time steps, and map instances,
respectively. Without the key-value cache, all these atten-
tion modules would be rather expensive.

Inspired by BehaviorGPT [5], we introduce an attention-
based patching module for temporal abstraction, leading to
fewer temporal tokens of agents. Specifically, we define a
trajectory patch of an agent as

P τ
i = S

(τ−1)×ℓ+1:τ×ℓ
i , i ∈ {1, . . . , A} ,

τ ∈ {1, . . . , Npatch} ,
(1)

where ℓ is the number of time steps covered by a trajectory
patch, Npatch = T/ℓ, St

i denotes the i-th agent’s state at time
step t, and P τ

i represents the τ -th patch of the i-th agent. On
top of this, we utilize an attention module to obtain patch-
level embeddings:

P̂ τ
i = MHSA(Q = Ŝτ×ℓ

i ,K = V = {[Ŝt
i , Rt→τ×ℓ

i ]},
t ∈ {(τ − 1)× ℓ+ 1, . . . , τ × ℓ− 1}) .

(2)
Here, Ŝt

i is the embedding of St
i , P̂ τ

i is the patch em-
bedding of the i-th agent at the τ -th patch, MHSA(·) is
multi-head self-attention, [:, :] denotes concatenation, and
Rt→τ×ℓ

i is the positional embedding of St
i relative to Sτ×ℓ

i .

1



Table 1. Single-Model Prediction Results on the Argoverse 2 Validation Set

Method b-minSFDE6 ↓ minSADE6 ↓ minSFDE6 ↓ actorMR6 ↓ actorCR6 ↓
QCNeXt 1.78 0.52 1.12 0.14 0.80%
Lite-QCNet 1.78 0.53 1.12 0.14 0.77%

Table 2. Quantitative Results on the Argoverse 2 Multi-Agent Motion Forecasting Benchmark

Method b-minSFDE6 ↓ minSADE6 ↓ minSFDE6 ↓ actorMR6 ↓ actorCR6 ↓ minSADE1 ↓ minSFDE1 ↓
HeteroGCN 2.12 0.69 1.46 0.19 0.01 1.23 3.05
FJMP 2.59 0.81 1.89 0.23 0.01 1.52 4.00
Forecast-MAE 2.24 0.69 1.55 0.19 0.01 1.30 3.33
FFINet 2.44 0.77 1.77 0.24 0.02 1.24 3.18

QCNeXt×8 1.6536 0.5003 1.0232 0.1310 0.0088 0.9372 2.2866
QCNeXt×4+Lite-QCNet×4 1.6664 0.4978 1.0154 0.1282 0.0088 0.9287 2.2656

The complexity of this patching operation is O(AT ). Us-
ing this patching operation, we assimilate the embeddings
of S

(τ−1)×ℓ+1:τ×ℓ−1
i into that of Sτ×ℓ

i and acquire the
patch embedding P̂ τ

i . Subsequently, the temporal self-
attention, the agent-map cross-attention, and the agent-
agent self-attention all operate on the patch-level embed-
dings of agents. As a result, their complexities will be-
come O(AT 2/ℓ2), O(ATM/ℓ), and O(A2T/ℓ), respec-
tively, where ℓ is the number of time steps in a patch. We
set ℓ as 5 in our implementation without hyperparameter
tuning, but using a larger patch size may further lower the
complexity without affecting the performance.

2.2. Modification 2: k-NN Attention

Spatial interaction modeling is essential for understand-
ing traffic scenarios. For this reason, many motion forecast-
ing models incorporate modules like self-attention among
map elements, self-attention among agents, and cross-
attention between agents and map elements. Since the num-
ber of tokens involved in the attention operation may be
large, we can utilize local attention to reduce the complex-
ity. QCNet selects a query element’s neighboring key/value
elements according to some distance thresholds, which re-
sults in a varied number of neighbors and unstable compu-
tational/memory costs. To mitigate this problem, we use
k-NN attention modules instead, making the computational
and memory costs more controllable. For instance, the com-
plexity of agent-map cross-attention and agent-agent self-
attention in the scene encoder will be further reduced to
O(ATk/ℓ) by the k-NN neighbor selection. On the other
hand, the query-based decoder will have the complexity of
O(ANk) for map attention and agent attention, where N is
the number of modes. We set the number of neighbors for
all spatial attention modules in the encoder as 32. On the

other hand, the number of neighbors is set as 100 in the de-
coder. Again, these hyperparameters are chosen according
to our intuition without trial and error.

3. Experiments

3.1. Implementation Details

We set the hidden size as 128 and obtain models with
8.3M parameters. Most implementation details in model ar-
chitecture follow QCNeXt [6,7], except we have a patching
module at the very beginning of the encoder and employ k-
NN attention in both the encoder and the decoder. We train
models on the training split of the Argoverse 2 Motion Fore-
casting Dataset [4] using the AdamW optimizer [2]. The
training process lasts 50 epochs, with a batch size of 32, a
weight decay rate of 0.1, a dropout rate of 0.1, and an ini-
tial learning rate of 5 × 10−4 decayed to 0 by the cosine
annealing scheduler [1].

3.2. Ensembling

Our test set results are obtained via the ensemble of four
Lite-QCNet models and four QCNeXt models [7]. These
models are trained using different random seeds. Given
the prediction results produced by these models, we use k-
means ensembling for trajectory aggregation, as illustrated
in [7].

3.3. Quantitative Results

The single-model prediction results on the validation
split of the Argoverse 2 Motion Forecasting Dataset [4] are
shown in Tab. 1. From the results, we can conclude that
Lite-QCNet performs similarly to QCNeXt, with a slightly
lower collision rate and a slightly higher average displace-
ment error.

2



The test set results of the Argoverse Multi-Agent Mo-
tion Forecasting Benchmark are listed in Tab. 2. On the
one hand, both QCNeXt and the combination of QCNeXt
and Lite-QCNet outperform other approaches significantly.
On the other hand, the combination of QCNeXt and Lite-
QCNet outperforms pure QCNeXt on all metrics except the
Brier Score.

In summary, although Lite-QCNet consumes fewer com-
puting resources than QCNeXt, it performs competitively
in multi-agent motion forecasting, demonstrating the effec-
tiveness of our improvements.

4. Conclusion
In this technical report, we rethink the architecture de-

sign of QCNet/QCNeXt and derive a lightweight variant
named Lite-QCNet. Benefiting from the patching module
and the k-NN attention, we significantly improve the effi-
ciency of the baseline model while achieving state-of-the-
art performance on the Argoverse 2 Multi-Agent Motion
Forecasting Benchmark.

References
[1] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient

descent with warm restarts. In Proceedings of the Interna-
tional Conference on Learning Representations (ICLR), 2017.
2

[2] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. In Proceedings of the International Conference
on Learning Representations (ICLR), 2019. 2

[3] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In Advances in Neural
Information Processing Systems (NIPS), 2017. 1

[4] Benjamin Wilson, William Qi, Tanmay Agarwal, John Lam-
bert, Jagjeet Singh, Siddhesh Khandelwal, Bowen Pan, Rat-
nesh Kumar, Andrew Hartnett, Jhony Kaesemodel Pontes,
Deva Ramanan, Peter Carr, and James Hays. Argoverse 2:
Next generation datasets for self-driving perception and fore-
casting. In Proceedings of the Neural Information Process-
ing Systems Track on Datasets and Benchmarks (NeurIPS
Datasets and Benchmarks), 2021. 1, 2

[5] Zikang Zhou, Haibo Hu, Xinhong Chen, Jianping Wang, Nan
Guan, Kui Wu, Yung-Hui Li, Yu-Kai Huang, and Chun Ja-
son Xue. Behaviorgpt: Smart agent simulation for au-
tonomous driving with next-patch prediction. arXiv preprint
arXiv:2405.17372, 2024. 1

[6] Zikang Zhou, Jianping Wang, Yung-Hui Li, and Yu-Kai
Huang. Query-centric trajectory prediction. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2023. 1, 2

[7] Zikang Zhou, Zihao Wen, Jianping Wang, Yung-Hui Li,
and Yu-Kai Huang. Qcnext: A next-generation framework
for joint multi-agent trajectory prediction. arXiv preprint
arXiv:2306.10508, 2023. 1, 2

3


	. Introduction
	. Methodology
	. Modification 1: Agent Patching
	. Modification 2: k-NN Attention

	. Experiments
	. Implementation Details
	. Ensembling
	. Quantitative Results

	. Conclusion

